AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

Leaving Certificate Examinations 2002

Physics

Higher Level

Marking scheme

In considering this marking scheme the following points should be noted:

- 1. In many instances only key words are given, words that must appear in the **correct context** in the candidate's answer in order to merit the assigned marks.
- 2. Words, expressions or statements separated by a solidus, /, are alternatives which are equally acceptable.
- 3. Answers that are separated by a double solidus, //, are answers which are mutually exclusive. A partial answer from one side of the // may not be taken in conjunction with a partial answer from the other side.
- 4. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
- 5. The detail required in any answer is determined by the context and manner in which the question is asked and by the number of marks assigned to the answer in the examination paper. Therefore, in any instance, it may vary from year to year.
- 6. For lack of units, or incorrect units, one mark is deducted, as indicated. This is shown as (3-1), or (4-1) etc., in the right hand column.
- 7. Each time an arithmetical slip occurs in a calculation one mark is deducted. This is shown as (3-1), or (4-1) etc., in the right hand column.

Section A 120 Marks

Marks awarded for the THREE best answers

Question 1

Calculate the sum offorces	
up = 2 + 4 = 6 (N)	3
down = $2 + 1 + 1.8 + 1.2 = 6$ (N)	3
resultant force /vector sum = 0 / forces up = forces down	3
(If weight of metre stick is omitted, give a maximum of 6/9)	

Calculate the sum ofmoments	
$moment = force \times distance (stated or implied)$	3
sum of anticlockwise moments = $(+)2.8$ (N m) / 280 (N cm)	3
1×40.5	3
sum of clockwise moments = 2.797 (or 2.8) (N)	3
$(+)2.8 - 2.797 \approx 0$ / $2.8 \approx 2.797$	3
sum of moments is zero / sum of clockwise = anticlockwise	
/ law verified	3
(Deduct 3 marks if moments are taken about a point other than the 10 cm	n mark)

Describe how the centre of gravity	
balance metre stick on a suitable fulcrum	3
read / mark position of equilibrium	3

Why is it vertically

spring balance gives correct reading / friction or additional forces / distance along metre stick = perpendicular distance / distance can be read directly / reference to $\cos \vartheta$ or $\sin \vartheta$ 7

Advantage of room temperature

heat lost to surroundings	3
heat gained	3
approximately equal	3

Describe how mass of ice is found

final mass (of calorimeter + contents)	3
initial mass of calorimeter + water	3
subtract	3

Calculate c

$(mc\Delta\vartheta)_{Al} + (mc\Delta\vartheta)_{water} = (ml)_{ice} + (mc\Delta\vartheta)_{melted\ ice}$	6
(<i>ml</i> missing 0; any other missing item - 3)	
fall in temperature $= 16.2 ^{\circ}\text{C}$	3
substitution into formula containing <i>ml</i>	3
$3.2 \times 10^5 \text{ J kg}^{-1}$	3
(-1 for lack of units or incorrect units)	

Two reasons why answer is not exact

thermometer not sensitive enough lack of insulation lack of stirring heat loss/gain to surroundings too long for ice to melt inside of calorimeter tarnished splashing heat capacity of thermometer

any two, 4+3

Describe with diagram

fixed length of string and method of measuring tension	3
tuning fork / signal generator and magnet	3
find frequency and tension when resonance occurs	3
change frequency and repeat	3
(-3 for lack of a diagram)	

Why was length kept constant?

frequency varies with length / keep all other factors constant 6 (For $f \propto l$ give 3)

Plot a graph

square root of tension / frequency squared	3
label axes	3
plot 6 points correctly	3
straight line	3
good fit	3
(No graph paper maximum first 2×3)	

Estimate tension

$(\sqrt{T} =)$ 5.5 to 5.7	4
30.2 to 32.5 N	3
(-1 for lack of units or incorrect units)	

Diagram of apparatus	
variable power source and ammeter in series	3
voltmeter in parallel	3
electrodes in solution	3
anode and cathode correctly labelled	3

Draw graph

axes labelled	3
6 points plotted correctly	3
straight line	3
good fit	3
(No graph paper maximum first 3)	

Calculate resistance

two points on graph	3
method for slope	3
19.5 to 20.5 Ω	3
(-1 for lack of units or incorrect units)	

Sketch	
straight line	4
starting at $v > 0$	3

Question 5 MARKS AWARDED FOR THE EIGHT BEST ANSWERS

(a) $v = r\omega$ 5 (rad) s ⁻¹	4 3
(b) $t = T - 273$ (Any reference to Kelvin and 273 / specific example e.g 273 K = 0° C 4)	7
(c) Solar constant by time $/1.35 \times 10^{3} \times 3.16 \times 10^{7}$ 4.27×10^{7} kJ $/$ 4.27×10^{10} J	4 3
(d) change in frequency / pitch /wavelength movement	4 3
(e) $\frac{P}{A}$ // rate at which sound energy passes / no. of watts explain // per unit area	4 3
(f) $\frac{1}{200}$ / 5×10 ⁻⁶ m	7
(g) $\frac{1}{2}CV^2$ 7.2×10 ⁻³ J	4 3
 (h) cutting off supply / current / power (fault / difference in current between live and neutral / safety / protects against electrocution / current in earth (wire) 3) 	7
(i) magnetic flux density (B), Current (I), Length (l), angle any two	4 + 3
(i) splitting (large) puelous	Λ

(j) splitting (large) nucleus4release of energy / radiation / nuclei / neutrons3

Question o	
State Newton's 2 nd Law	
force is proportional	3
rate of change of momentum	3
(F = ma 3	
explain symbols 3)	
Name Law and give statement	
Hooke's	3
restoring force \propto (= to k times) // Extension \propto	3
displacement // force / load / weight	3
Name and describe motion	
simple harmonic / SHM	3
$a = -\omega^2 s$ // acceleration is α to	3
explain // displacement / distance (and direction)	3
2 other examples	
stretched elastic / pendulum, oscillating magnet, springs of car	r,
vibrating tuning fork, object bobbing in water waves,	
ball in saucer, etc . or any system that obeys Hook's law	
	י ו ר

any two, 2 by 3

Calculate k

$F = mg / 60 \times 9.8 / 588 (N)$	3
$1.2 \times 10^5 \text{ N m}^{-1}$	3
(-1 for lack of units or incorrect units)	
Calculate(i) period	
$\frac{k}{m} = \omega^2$	4
$\omega = 38 (s^{-1})$	3
$T = \frac{2\Pi}{\omega}$	3
0.16 to 0.17 s	3
$T = 2\pi \sqrt{\frac{m}{k}}$	
substitution	
0.16 to 0.17 s	
(-1 for lack of units or incorrect units)	
Calculate (ii) no. of oscillations	

$(f =) \frac{1}{T}$	4
6 (5.88 to 6.25)	3

7

3 3

Explain the terms (i) constructive interference		
2 waves combine	3	
wave of greater amplitude	3	
Explain (ii) coherent		
same frequency / wavelength	3	
in phase / constant phase difference	3	
Condition for destructive interference		
out of phase / path difference // trough meets		3
by $(n +) \frac{1}{2}$ wavelength // crest / peak		3
Wave nature of light		
diffraction grating / Young's slits // 2 polaroids	3	
spectrometer and light source / laser // light source	3	
shine light through grating or slits // shine light, rotate on	le 3	
interference pattern // change in intencity	3	
(i) Calculate λ for radiowaves		
$v = f\lambda$	3	
10^4 m / 10 km	3	
(ii) What is the minimum distance		
half wavelength / 5 km	3	
1500 km + 5 km	3	
1505 km	3	
(iii) Calculate minimum h		
Pythagoras theorem (any implication)	3	
substitution	3	
61 km	5	
(-1 for lack of units or incorrect units)	5	

Define	<i>(i)</i>	power
	1-1	r

Define (1) power	
rate // $VI / \frac{W}{t} / RI^2$	3
of doing work / using energy // explain symbols	3
(ii) resistivity	
	2
resistance of a piece of material $// \frac{RA}{l}$	3
unit length and unit area// explain R, A and 1 3	
Demonstration of heating effect	
apparatus	3
circuit	3 3
way of detecting heat change	3
result	3
Calculate (i) resistance	
$A = \pi r^2$	3
7.85×10^{-5} / $2.5 \times 10^{-5} \pi$	3
$R = \frac{\rho l}{A} \qquad / \rho = \frac{RA}{l}$	3
Substitution	3
9.5 to 9.6 Ω	3
(-1 for lack of units or incorrect units)	
(ii) current	
W = VI	3
200 A	3
(-1 for lack of units or incorrect units)	
(iii) energy lost	
$(P =) I^2 R$	3
3.8×10^5 W / 0.38 MW	3
(-1 for lack of units or incorrect units)	
Reducing energy lost	
thicker cables	
lower resistivity / resistance higher V (tension)	
EHT	5
	5

Production of X-rays

J	
hot cathode / filament	3
labelled target	3
indication of high voltage	3
vacuum / shield / cooling / window	Any two, 2×3

X-ray inverse of photoelectric

X-ray	Photoelectric
Electrons / cathode rays in	electrons out
radiation / light out	radiation / light in

3

3

3 3

Demonstrate photoelectric effect.suitable light// shine lightmetal plate/ cap// photocell(negatively charged) electroscope // milliammeterleaves fall// current

Einstein's explanation.

photon	/ energy packet / quantum	3
E = hf		3
gives (all)	energy to electron	3
work funct	on / threshold frequency or wavelength	3
rest as kine	tic energy of electron / electrons released	3
(final 4 x 3	may be obtained by writing Einstein's photoelectric eq	uation)

Applications of photocell

burglar alarm smoke alarms safety switch light meters automatic lights counters automatic doors control of central heating burners sound track in films scanner reading bar codes stopping conveyer belt

3 + 2

Question 10 (a)

Four fundamental	forces	
gravitational	•	3
electromagnetic		
strong (nuclear)		3 3 3
weak (nuclear)		3
<i>Name of force for</i> strong	binding nucleus	3
Two properties of j	force	
short range, strong	(est),	
act on nucleons, binds nucleus		Any two, 2 x 3
Outline of Cockroj	ft and Walton	
moving protons		3
high voltage		3 3 2
alpha particles rele		3
screen / micro	oscope	2
Nuclear equation		
${}^{1}_{1}H$	$/ \frac{1}{1}p$	3
${}_{2}^{4}He$	$/ \frac{4}{2}\alpha$	3
$^{1}_{1}H + ^{7}_{3}Li$		3
$\rightarrow {}^{4}_{2}He + {}^{4}_{2}He$	$/ 2_{2}^{4}He$	3
Energy released		
$E = mc^2$		3
Mass defect		
3.0×10^{-29} (kg)		3 3 3
2.7×10^{-12} J		3
(-1 for lack of units or	incorrect units)	

Question 10 (b)

<i>What is a semiconductor?</i> resistivity between conductor and insulator	3 3
<i>Explain change in resistance</i> increasing temperature frees more charge carriers/ electrons greater conductivity / lower resistance	3 3 3
<i>Sketch graph</i> labelled axes concave upward curve	3 3
<i>Structure of transistor</i> 3 layers npn or pnp, labelled 1 connection to each layer	3 3 3
Explain how circuit operates input voltage changes base voltage /current controls current through R_4 / I_c / voltage across R_4 small change in input current / voltage large change in output current / voltage	3 3 3 3
Sketch graphs of input and output voltages varying input magnified varying output out of phase	3 3 3
Another use for transistor switch / inverter / current amplifier / logic gate / NOT gate	5

(<i>a</i>)	copper is a conductor. good	4 3
(b)	force $/ \frac{F}{Q}$	4
	per unit charge / explain symbols	3
(c)	experience (a large) force	7
(<i>d</i>)	ions act as charge carriers (moving / flowing3)	7
(e)	electrons / current / charge / flow(s) to or from ground through conductor / copper / air	4 3
(f)	neutralises charged clouds conducting charge /lightning / current to earth	4 3
(g)	act as (lightning) conductors(current through body / injury / electrocution3)	7
	point effect / point discharge (or implied) (current) leakage / sparking / fire	4 3

Marks awarded for the TWO best answered parts

12 (a)

<i>State principle of conservation of momentum</i> momentum before = momentum after / equation no external force	3 3
Mass of gas mv 50 m $50000 \times 2 = 50000 \times 0.5 + 50m$ 1500 kg / 1515 kg (-1 for lack of units or incorrect units)	3 3 3 3
<i>Direction</i> forward / towards space station / to right	4
<i>Change in direction</i> gas expelled in one direction rocket in other direction	3 3
12 (b)	
<i>Laws of refraction</i> incident ray, refracted ray and normal in same plane Sin i/ Sin r is a constant	3 3
<i>Optical structure of eye</i> shape of eye (labelled) lens labelled retina	3 3 3
<i>How does eye focus objects</i> change shape of lens / accommodation changes focal length / focus / power	3 3
Calculate (i) power (ii) focal length power = (-) 5 (m) (-) 0.2 m // (-) 20 cm (-1 for lack of units or incorrect units)	4 3

12 (c)

em induction	
(induced) e.m.f (in a conductor / coil / wire)	3
when magnetic flux / field changes	3
Lenz's law	
direction of (induced) current / voltage / emf	3
opposes change causing it	3
opposes enange eausing n	5
Why is current reduced?	
(back) e.m.f. in coil	3
increased magnetic flux // increases	3
increases back e.m.f. // self inductance	3
	3
reduces voltage / reduces current	3
Application	
dimmer switch / smooth d.c. / tuning radios / braking trains	
č č	s 4
/ damping in balances / induction coil	4
12 (d)	
12 (d)	
Name the scientist	4
	4
<i>Name the scientist</i> Rutherford / Geiger / Marsden	4
Name the scientist Rutherford / Geiger / Marsden What was observed	
Name the scientist Rutherford / Geiger / Marsden What was observed most alphas passed straight through	6
Name the scientist Rutherford / Geiger / Marsden What was observed	
 Name the scientist Rutherford / Geiger / Marsden What was observed most alphas passed straight through some deflected / scattered through large angles 	6
 Name the scientist Rutherford / Geiger / Marsden What was observed most alphas passed straight through some deflected / scattered through large angles Why in vacuum 	6
 Name the scientist Rutherford / Geiger / Marsden What was observed most alphas passed straight through some deflected / scattered through large angles Why in vacuum to prevent alphas colliding with other particles (and	6 3
 Name the scientist Rutherford / Geiger / Marsden What was observed most alphas passed straight through some deflected / scattered through large angles Why in vacuum to prevent alphas colliding with other particles (and being scattered) / range of alphas in air is (very) short	6
 Name the scientist Rutherford / Geiger / Marsden What was observed most alphas passed straight through some deflected / scattered through large angles Why in vacuum to prevent alphas colliding with other particles (and	6 3
 Name the scientist Rutherford / Geiger / Marsden What was observed most alphas passed straight through some deflected / scattered through large angles Why in vacuum to prevent alphas colliding with other particles (and being scattered) / range of alphas in air is (very) short (any reference to collisions 3) 	6 3
 Name the scientist Rutherford / Geiger / Marsden What was observed most alphas passed straight through some deflected / scattered through large angles Why in vacuum to prevent alphas colliding with other particles (and being scattered) / range of alphas in air is (very) short (any reference to collisions 3) Conclusion 	6 3 6
 Name the scientist Rutherford / Geiger / Marsden What was observed most alphas passed straight through some deflected / scattered through large angles Why in vacuum to prevent alphas colliding with other particles (and being scattered) / range of alphas in air is (very) short (any reference to collisions 3) Conclusion nucleus / small dense core	6 3 6
 Name the scientist Rutherford / Geiger / Marsden What was observed most alphas passed straight through some deflected / scattered through large angles Why in vacuum to prevent alphas colliding with other particles (and being scattered) / range of alphas in air is (very) short (any reference to collisions 3) Conclusion 	6 3 6